On closed graph theorems in topological spaces and groups
نویسندگان
چکیده
منابع مشابه
Closed Graph Theorems for Bornological Spaces
The aim of this paper is that of discussing closed graph theorems for bornological vector spaces in a self-contained way, hoping to make the subject more accessible to non-experts. We will see how to easily adapt classical arguments of functional analysis over R and C to deduce closed graph theorems for bornological vector spaces over any complete, non-trivially valued field, hence encompassing...
متن کاملOn Regular Generalized $delta$-closed Sets in Topological Spaces
In this paper a new class of sets called regular generalized $delta$-closed set (briefly rg$delta$-closed set)is introduced and its properties are studied. Several examples are provided to illustrate the behaviour of these new class of sets.
متن کاملdominating subset and representation graph on topological spaces
Let a topological space. An intersection graph on a topological space , which denoted by , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of and graph properties of are investigated. Also some classifications and representations for the graph ...
متن کاملMore On λκ−closed sets in generalized topological spaces
In this paper, we introduce λκ−closed sets and study its properties in generalized topological spaces.
متن کاملSome new classes of topological vector spaces with closed graph theorems
In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1979
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-104-2-85-95